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Water Vapor Tomography Using GPS Phase
Observations: Simulation Results

Tobias Nilsson and Lubomir Gradinarsky

Abstract—Global positioning system (GPS) tropospheric to-
mography normally requires that the slant wet delays between
the GPS satellites and the ground receivers are estimated with
high accuracy, which may be difficult given the presence of a
number of error sources. This paper presents an alternative ap-
proach, namely to estimate the three-dimensional structure of the
atmospheric water vapor directly from raw GPS phase observa-
tions. The method is tested in a number of simulations, where
the impact of network size, the possible horizontal and vertical
resolutions, the observation noise, and the inclusion of additional
global navigation satellite systems were studied. The simulation
results indicate that the refractivity field can be obtained with an
accuracy of ∼20% or better up to around 4 km with a height
resolution of 1 km provided that a sufficient number of receivers
and satellites is available.

Index Terms—Global positioning system (GPS), humidity,
Kalman filtering, meteorology, simulation, terrestrial atmosphere,
tomography.

I. INTRODUCTION

THE GLOBAL positioning system (GPS) is a useful tool
for retrieving the total amount of integrated water vapor

in the atmosphere [1]–[3]. Using a local network of GPS
receivers, it is also possible to estimate the three-dimensional
(3-D) structure of the wet refractivity of the atmosphere. This is
done by using tomographic methods. These have been success-
fully applied to retrieve the electron content in the ionosphere
[4]. For the troposphere, several different methods have been
developed [5]–[11].

The application of GPS for tomographic retrieval of the water
vapor distribution in the troposphere requires that the slant wet
delays, i.e., the delay of the GPS signals in the atmosphere due
to water vapor between each satellite and each receiver, are es-
timated from the GPS phase data recorded by the receivers. To
retrieve the 3-D structure of the wet refractivity, the troposphere
is divided into a finite number of boxes (normally called voxels,
finite volume pixels) where the refractivity is assumed to be
constant. By doing this discretization, the slant wet delays can
be described as linear combinations of the refractivities of the
voxels; hence the refractivity field can be obtained by solving a
linear system of equations.
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To retrieve the slant wet delays from the GPS data, the delays
are modeled as functions of a number of unknown parameters.
Normally, a slant wet delay is modeled as being a function
of a zenith wet delay and a gradient [5]. This model is then
used in GPS data processing, where the model parameters are
estimated along with other unknowns contributing to the signal
delays. The residuals of the processing are then considered
to contain the unmodeled part of the slant wet delays. Hence,
slant wet delays can be obtained by adding the residuals to the
slant wet delays calculated from the retrieved zenith wet delays
and gradients.

However, it is not obvious that the retrieved slant wet delays
will be accurate enough. The parts of the delays due to water
vapor not modeled by the zenith delays and the gradients might
be absorbed in the estimation of other unknown parameters in
the GPS processing, like clock errors. Even for ideal conditions,
the slant wet delays retrieved in this way may not be very
accurate [12]. Hence, some of the information about the 3-D
structure of the wet refractivity contained in the slant wet delays
may be lost in this process. Consequently, the refractivity field
retrieved using these slant wet delays in GPS tomography may
contain unacceptable errors.

In this paper, a new method to retrieve the 3-D structure of
the water vapor is presented. Instead of using one model for the
slant wet delays in GPS processing and then applying another
model to retrieve the wet refractivity field, we apply the voxel
discretization of the wet refractivity field already in the GPS
processing step. Hence, slant wet delays are described as linear
combinations of the refractivities of voxels in GPS processing.
This has the advantage that any error arising from the modeling
of slant wet delays in terms of zenith delays and gradients
will disappear. Another advantage is that the number of steps
required to obtain the wet refractivity field is reduced.

The disadvantage is of course that there are many parameters
that need to be estimated in the processing. It can be shown
that apart from the refractivity of the voxels, the parameters
needed to be estimated will be errors in the satellite and the
receiver clocks. However, the clock errors need to be estimated
(alternatively removed using differencing methods) anyway,
and there are no reasons why the effect of clock error esti-
mation should be less if it is done in the first step before the
tomographic estimation of refractivities. Also, the number of
additional parameters needed to be estimated will be small
compared to the number of observations if there are many
satellites and receivers available. Given N satellites and M
receivers, there will be N ∗M observations at each epoch and
N + M clock errors to be estimated, and if N and M are large,
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then N ∗M � N + M ; hence the cost of estimating the addi-
tional clock errors will be low.

The new method was briefly described in [13], where a few
simulation results were also presented. In Section II, we present
the method in greater detail. The theory of this method requires
retrieving the integer ambiguities of the observed GPS phases.
In Section III, we demonstrate the accuracy of this retrieval.
In Section IV, to assess its capabilities, we test the method
through simulations. In the simulations, we also test the impact
of including data from other global navigation satellite systems
(GNSSs) and the possibility to use the method in real time.
Our conclusions are presented in Section V. A comparison
is also made with more simple methods, like estimating the
refractivity using only one GPS receiver. These are presented
in Appendix III.

II. THEORY

The observed carrier phase (expressed in units of length) Lj
i

of the GPS signal from satellite j observed by receiver i can be
written as [14]

Lj
i = ρj

i + τi + τ j + Ij
i + lji + M j

i λ + εji (1)

where
ρj

i distance between the satellite and the receiver;
τi and τ j errors in the receiver and the satellite clocks;
Ij
i and lji ionospheric and tropospheric delays between the

satellite and the receiver;
M j

i integer ambiguity;
λ wavelength of the signal;
εji phase measurement error. This term will contain

the not modeled contributions to the observed
phase, e.g., receiver noise, multipath, etc.

The distance between the satellite and the receiver can be cal-
culated if we know their positions. In a permanent ground net-
work, the receiver positions could be known with an accuracy of
a few millimeters. Satellite positions, however, generally have
an accuracy of ∼5 cm [15]. For a dense network of receivers, a
small error in satellite position will introduce approximately the
same errors in the distances to the satellite for all receivers, i.e.,
δρj

i ≈ δρj . For example, the difference in error in the observed
phases of two stations separated by 10 km caused by a 20-cm
satellite position error will be around 0.1 mm. Hence, an error
in the satellite position will have approximately the same effect
as an error in the satellite clock.

The tropospheric delay is

lji =10−6

∫
Ndl

=10−6

∫
Nh dl + 10−6

∫
Nw dl

=(lh)j
i + (lw)j

i (2)

where the indices h and w denote the hydrostatic and wet
parts, and N is the refractivity (N = 106(n− 1), n being

the refractive index). The hydrostatic part of the delay in
the zenith direction can be approximated if the ground level
pressure is measured at the receiver location (see Appendix I).
The hydrostatic delay in the slant direction can then be cal-
culated from the hydrostatic zenith delay using a mapping
function [16].

Letting L̂j
i = Lj

i − (ρ0)
j
i − (lh)j

i , where (ρ0)
j
i is the approx-

imate distance from the available satellite positions, we rewrite
(1) as

L̂j
i = τi + τ j + δρ j + Ij

i + (lw)j
i + M j

i λ + εji . (3)

For phase observations, the integer ambiguities and clock errors
are partly indistinguishable. For example, an increase in all
ambiguities of one satellite will have the same effect on the
phase observations as an increase in that satellite’s clock. This
makes it possible to consider parts of the ambiguities as clock
errors, hence reducing the number of ambiguities needed to be
estimated. More precisely, we can include all ambiguities of one
satellite (for example, satellite number 1) and all ambiguities of
one receiver (receiver number 1) as additional contributions to
the satellite and receiver clock errors. The remaining parts of
the integer ambiguities, which need to be estimated, will then
be M̂ j

i = M j
i −M j

1 −M1
i + M1

1 . Now (3) can be written as

L̂j
i = τi + M1

i λ + τ j + δρ j + M j
1λ

−M1
1λ + Ij

i + (lw)j
i + M̂ j

i λ + εji

= τ̂i + τ̂ j + Ij
i + (lw)j

i + M̂ j
i λ + εji (4)

where τ̂i = τi + M1
i λ and τ̂ j = τ j + δρ j + M j

1λ−M1
1λ.

The new integer ambiguities M̂ j
i can be estimated by taking

the double difference [14] of (4) as (note that M̂ j
1 = M̂1

i = 0)

L̂j1
i1 = L̂j

i − L̂1
i − L̂j

1 + L̂1
1

= Ij1
i1 + (lw)j1

i1 +
(
M̂ j

i − M̂1
i − M̂ j

1 + M̂1
1

)
λ + εj1i1

= Ij1
i1 + (lw)j1

i1 + M̂ j
i λ + εj1i1 . (5)

For a dense network of receivers, Ij1
i1 , (lw)j1

i1 , and εj1i1 will all
be small compared to λ (at least for signals observed at high
elevation angles), so M̂ j

i can be estimated by

M̂ j
i = INT

[
L̂j1

i1

λ

]
(6)

where INT denotes rounding off to the nearest integer. An
integer ambiguity will not change as long as the receiver tracks
the satellite. Hence, if no cycle slips occur, an ambiguity only
needs to be estimated once for each period the satellite is
visible.

The ionospheric delay can be eliminated by using two fre-
quencies and forming the ionospheric free combination [14].
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Defining

L̄j
i = L̂j

i (f) − λM̂ j
i (f) (7)

L̃j
i =

f2
1 L̄

j
i (f1) − f2

2 L̄
j
i (f2)

f2
1 − f2

2

(8)

τ̃i =
1

f2
1 − f2

2

(
f2
1 τ̂i(f1) − f2

2 τ̂i(f2)
)

(9)

τ̃ j =
1

f2
1 − f2

2

(
f2
1 τ̂

j(f1) − f2
2 τ̂

j(f2)
)

(10)

ε̃ji =
1

f2
1 − f2

2

(
f2
1 ε

j
i (f1) − f2

2 ε
j
i (f2)

)
(11)

we obtain

L̃j
i = τ̃i + τ̃ j + (lw)j

i + ε̃ji . (12)

The ordinary ionospheric free combination used in (8) removes
the first-order ionospheric effect. However, during periods of
high ionospheric activity, we may also need to consider higher
order ionospheric effects. Methods for also removing some
of the higher order effects exist [17]. In [18], it is shown
that with the future modernization of GPS (including a third
frequency), the ionospheric effect of the second and third orders
may also be removed. However, in this paper, we assume that
the effect of the ionosphere is completely removed by using (8).

If we make a discretization by assuming that the wet refrac-
tivity field can be described by a linear combination of a number
of base functions, the wet tropospheric delay can be described
as a linear combination of these base functions integrated along
the signal path. A common and simple choice of base functions
is voxels, meaning that the 3-D space is divided into a number
of boxes (voxels). In every voxel, the wet refractivity Nw

is assumed to be constant. Using this discretization, the wet
tropospheric delay can be expressed as

(lw)j
i = 10−6

∫
Nw dl = 10−6

n∑
k=1

Nw(k)xj
i (k) (13)

where n is the number of voxels and xj
i (k) is the length of the

ray from satellite j to receiver i in voxel k. If sm denotes the
satellite transmitting ray number m and rm denotes the receiver
receiving ray m, (12) can now be written as

L̃(m)= L̃sm
rm

=τrm
+τsm +10−6

n∑
k=1

Nw(k)xsm
rm

(k)+ε̃(m)

= τr(m)+τs(m)+10−6
n∑

k=1

Nw(k)x(m, k)+ε̃(m) (14)

where x(m, k) is the length of ray m in voxel k. By writing
this equation for all rays, we form a linear system of the form
y = Ax, where the unknowns (x) are the voxel refractivities
and the satellite and the receiver clock errors.

The system will however in general be ill conditioned due
to poor voxel coverage in some areas caused by limited ray
geometry [10]. If we would use a flat grid, i.e., model the
troposphere as a number of flat layers with all stations in the

lowest layer, it would be impossible to retrieve the refractivity
field if the number of layers were larger than two (with all
stations located in the lowest layer). This can easily be realized
by noting that in such a case an increase of the refractivity
in one layer could be compensated by a decrease in another
layer, leaving the slant wet delays unchanged. To avoid this
problem, we do not use a flat grid but a grid following the
curvature of the Earth. However, since this curvature is small,
we will still have a very weak geometry. To solve the system,
additional information must be included. One approach would
be to add a set of smoothing equations Bx = 0 as in, e.g.,
LOcal Tropospheric TOmographic Software (LOTTOS) [5],
or to implement a Kalman filter [19] as in Wet Refractivity
Kalman Filter (WeRKaF) [10], [11]. Here, the Kalman filter
approach has been chosen (see Appendix II).

III. TEST OF AMBIGUITY DETERMINATION

The proposed method requires that the integer ambiguities
are correctly estimated. This is possible if Ij1

i1 and (lw)j1
i1 in

(5) (as well as the observation noise) are small compared to λ.
Otherwise, the ambiguities determined by (6) can be in error. To
test how well the ambiguities can be determined, an investiga-
tion using real data from the local GPS network in Göteborg,
Sweden, was performed. We calculated ∆j

i = L̂j1
i1/λ− M̂ j

i

[where M̂ j
i is determined by (6)] for all observations above

a minimum elevation (set to 5◦ in this investigation). If the
majority of the observations are ∆j

i ≈ 0, and very few (or
none) observations are ∆j

i ≈ ±1/2, then the ambiguities have
probably been determined correctly.

In Fig. 1, the distributions of ∆j
i for the two GPS frequencies

L1 (λ = 19.0 cm) and L2 (λ = 24.4 cm) are displayed. Here,
the interval [−1/2, 1/2] is divided into 200 subintervals. We
then plot the number of observations in each subinterval. Data
from two of the stations separated by ∼8.4 km were used. The
data were collected on July 4, 2001, between 00:00 coordinated
universal time (UTC) and 15:00 UTC using a 15-s sampling
interval.

As seen in the figure, most of the values are close to zero, and
very few are close to ±1/2 (less than 0.04% of all observations
with |∆j

i | > 0.95 · 1/2). Those with high values have a low
elevation angle. If there are no cycle slips, the ambiguities
will not change, so it is sufficient to estimate the ambiguities
at high elevations and then check that no cycle slips occur
at lower elevations. All other investigated days gave similar
results. Hence, we can conclude that the ambiguities can be
correctly estimated. It should be noted that the amount of data
available was limited (May–August in 2001 and 2002); thus,
it cannot be excluded that under very extreme conditions the
ambiguity resolution technique used here could fail.

The accuracy of the ambiguity estimations deteriorates for
longer baselines (> 50 km), which we will normally not have
in a typical GPS tomographic network. Also, over such large
distances, the contribution to ∆j

i from the wet part of the
tropospheric delay may not be negligible. In case such longer
baselines are used, a way to improve the situation may be to first
estimate the ionospheric delays to remove most of the errors
associated with the ionosphere.
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Fig. 1. Distribution of ∆j
i = L̂j1

i1/λ − M̂j
i for (top) L1 and (bottom) L2.

IV. SIMULATION RESULTS

A. Simulation Setup

We used two different networks, namely: 1) the existing net-
work in Göteborg consisting of eight sites and 2) a (nonexisting)
network of 25 sites. The sites of the latter were uniformly
distributed in longitude and latitude, and their heights were uni-
formly randomly distributed between 0 and 100 m. The heights
of the stations in the eight-station network varied from 55 to
170 m above the ellipsoid. In Fig. 2, the two different networks
are displayed together with the 3 × 3 grid used in most of the
simulations. The outer voxels were chosen to be larger than the
voxels in the middle (where the stations are located) to allow
for many rays to cross horizontal voxel borders and at the same
time allow for observations at low elevation angles. However,
it should be noted that in cases where the atmosphere is very
variable horizontally, problems arising from the assumption of
constant refractivity might occur. In height, we used a voxel
size of 1000 m and eight layers (hence assuming that there is
no significant amount of water vapor present above 8000 m,
which is a reasonable assumption for these latitudes).

Fig. 2. The 3 × 3 grid together with (top) the eight-station network and
(bottom) the 25-station network.

The geometry of the voxel grid is good if there are many
observations that cross many voxels. For the eight-station net-
work, the average number of observations for each epoch is
57.4. Using the grid in Fig. 2 (top), the average number of
observations crossing 8, 9, 10, 11, and 12 voxels are 11.6, 17.2,
19.6, 7.3, and 1.7, respectively. There were no observations
crossing more than 12 voxels and no less than eight since at
least eight voxels will be crossed if the rays are to exit the grid
at the top. If we, instead, would have used a grid with voxels
all having the same horizontal sizes (keeping the size of the
area covered the same), on average 43.0 crossed only eight
voxels, and on average there were 11.5 and 2.8 observations
crossing nine and ten voxels, respectively. No rays crossed more
than ten voxels. This indicates that using a more uniform grid
discretization, the equation system (14) would be weaker.

We first simulated the refractivity field from which we then
calculated the slant wet delays between the stations and the
satellites. To these we added the simulated integer ambiguities,
the clock errors, the hydrostatic delay errors, the ionospheric
delays, and the observation noise. Errors were also added to the
satellite positions (in all three coordinates). Then, we applied
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our method to estimate the ambiguities and used these to correct
the observations. After that, the ionospheric delays were re-
moved, and the resulting observations were put into the Kalman
filter to estimate the voxel refractivities (and the clock errors).
The Kalman filter loop was run both forward and backward.

In most simulations, the clock errors were described as
white noise processes with a standard deviation of 1.7 ms
(5 × 105 m), which are of the same order or worse than that
of real clock errors. However, the magnitude of the clock errors
will not have a large impact on the results since they need to
be estimated. The errors in the satellite position had a standard
deviation of 0.2 m, which is somewhat more uncertain than
the International GNSS Service (IGS) final orbits (rms error of
5 cm) but close to the IGS rapid orbits [15]. The errors in the
hydrostatic delays were assumed to originate from uncertain-
ties in pressure measurements having a standard deviation of
0.2 mbar. The wet refractivity profiles were based upon real
profiles obtained from radiosonde launches at the Landvetter
airport outside Göteborg, and a gradient of 0.14 mm/km in the
northeast direction was used in most simulations (a reasonable
value for the Göteborg area [20]). We used a sampling interval
of 120 s (which turned out to be sufficient). The measurement
noise was assumed to be white, a reasonable assumption when
the sampling period is larger than 10 s [21].

B. Refractivity Estimation for Two Networks

As a first case, we tested the retrieval of wet refractivity pro-
files constant in time. We performed two simulations for each
of the networks in Fig. 2, one with an exponential profile and
one with a profile with a strong inversion. An rms observation
noise of 5 mm was used. The simulated period was 14.5 h (of
this period, the last 12 h were used to check the solution, giving
the Kalman filter 2.5 h to converge). The retrieved profiles 5 h
after the start of the simulated period are shown in Fig. 3.
Shown are the profiles of the central voxel column. The error
bars are the formal error from the estimation covariance matrix
in the Kalman filter [19]. The retrieved profiles at later times
were approximately the same.

For the exponential profile, both networks retrieved the shape
rather well, and as expected, the 25-station network resulted in
a better agreement. Calculating the absolute mean estimation
error for all voxels and all time epochs in the last 12 h of the
simulations gave an average error of 2.05 mm/km for eight
stations and 1.10 mm/km for 25 stations. The absolute error is
largest in the lower atmosphere. For the eight-station network,
the mean estimation error for the first 4 km of the troposphere
was 3.38 mm/km, while only 0.71 mm/km for the top 4 km.
The corresponding values for the 25-station network were 1.67
and 0.53 mm/km.

For the profile with an inversion, the eight-station network
does not detect the inversion quickly. However, it detects it after
a longer time (> 12 h). At the end of the simulation period, it
can be seen that an inversion has been detected, although not
matching its magnitude. The 25-station network, on the other
hand, clearly detects the inversion. The mean estimation error is
7.72 mm/km for the eight-station network and 2.79 mm/km for
the 25-station network. However, the mean error of the eight-

Fig. 3. Simulated and estimated refractivity profiles after 5 h. The rms
observation noise was 5 mm. In this and the other figures, the retrieved solutions
are offset in height from the center of the voxel height for better visibility.

station network solution is decreasing with time and is around
4.4 mm/km at the end of the simulation. The mean estimation
error for the first 4 km was 13.27 mm/km using eight stations
and 4.02 mm/km using 25 stations.

Fig. 3 also displays the relative error, i.e., the relative devia-
tion between the simulated and retrieved refractivities. For the
exponential profile, the relative error is larger than 100% for
the top layers. This indicates that the method is not suitable
for retrieval of the wet refractivity high up in the troposphere,
where the amount of water vapor is low.

A more realistic case is a wet refractivity profile that changes
with time. Initially, the profile was almost exponential. At time
6:00, the refractivity around a height of 2 km began to increase.
The increase continued until 12:00. After that, the refractivity
started to decay back to its original shape, a state reached at
18:00. The rms observation noise was chosen to be 10 mm.
In Fig. 4, the simulated and estimated profiles at 9:00 and
13:00 are shown. As seen, the 25-station network retrieves the
profile better than the eight-station network at the lowest layer.
However, the 25-station network is slightly worse at a height of
between 3 and 5 km at 13:00. This is probably a consequence
of the correlations between the voxel refractivities used in
the Kalman filter, which do not completely allow for the rather
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Fig. 4. Simulated and estimated wet refractivity profiles using eight and
25 stations at (top) 9:00 and (bottom) 13:00. An increase in the refractivity
occurred around a height of 2 km between 6:00 and 12:00; then the profile
decayed back to normal until 18:00. The rms observation noise was 10 mm.

large decrease in the refractivity between the third and fourth
layers. As a consequence, the refractivity above 3 km is slightly
overestimated. The average estimation errors between 6:00
and 18:00 were 1.85 and 1.28 mm/km for the eight-site and
25-site networks, respectively. As before, the errors were larger
for the lower heights; the average estimation errors for the first
4 km were 2.97 and 2.18 mm/km using eight and 25 stations,
respectively.

C. Observation Noise Sensitivity

We investigated the sensitivity of the methods to observation
noise in the receivers using the 25-station network. We used a
constant profile having an inversion at ∼1.5 km. The rms noise
was varied from 0 to 15 mm.

In Fig. 5, the average estimation error is plotted as a function
of the rms observation noise. It should be noted that this noise
does not represent all the noise present in the GPS signals.
Additional noise components could arise from errors in the
estimation of hydrostatic delay and from errors in satellite posi-
tions. The results demonstrate that for an rms noise of less than
10 mm, the retrieved profile will not be affected significantly.

Fig. 5. Test of the sensitivity to noise. Plotted are the mean estimation errors
of the retrieved refractivity as a function of rms observation noise using the
25-station network and a constant profile having an inversion at ∼1.5 km.

D. Inclusion of Other GNSS

One possible way to improve the estimation of refractivity is
to increase the number of observations by including data from
other GNSSs such as the Russian system GLONASS [22] or
the future European system Galileo [23]. Note that since these
systems use other frequencies than GPS, we will have to include
additional receiver clock error terms for each system.

A simulation was performed using both GPS and Galileo.
The refractivity profile used was the same as in Fig. 4, and the
rms observation noise was 10 mm. The result using the eight-
station network is presented in Fig. 6 (the GPS-only case is also
plotted for comparison). The mean estimation error decreased
from 1.85 to 1.78 mm/km when using both systems. We can
observe a similar decrease in accuracy above 3 km as we did
in the case of the 25-station network; the explanation for this
is the same as before. It can be seen that the error for the top
4 km is larger when using GNSS, on average 1.08 mm/km,
while the GPS-only case being only 0.74 mm/km. For the first
4 km, the mean estimation error decreased to 2.48 mm/km
(from 2.97 mm/km). We did not observe any improvement
for the 25-station network when also including Galileo (mean
estimation error of 1.3 mm/km).

E. Grid Resolution Test

With the 25-station network, it might be possible to get a
better resolution using more voxels, either horizontally or verti-
cally (or both). To test the possibility of using higher horizontal
resolution, simulations based on a 5 × 5 grid were made. The
grid was chosen such that each horizontal voxel would contain
one station. In Fig. 7, the grid is displayed together with the
locations of the stations.

In Fig. 8, the results of simulations using the changing profile
in Fig. 4 are shown. Two simulations were made, one with GPS
only and one with both GPS and Galileo. When using GPS
only the errors were (as could be expected due to more un-
known quantities) somewhat larger than for the 3 × 3 network,



NILSSON AND GRADINARSKY: WATER VAPOR TOMOGRAPHY USING GPS PHASE OBSERVATIONS 2933

Fig. 6. Simulated and estimated wet refractivity profiles using GPS only and
GPS + Galileo at (top) 9:00 and (bottom) 13:00 for the eight-station network.
The rms observation noise was 10 mm.

Fig. 7. The 5 × 5 grid together with the 25-station network.

with mean estimation error of 2.01 mm/km. When using both
GPS and Galileo a mean estimation error of 1.78 mm/km was
obtained.

Fig. 8. Simulated and estimated wet refractivity profiles for the 5 × 5 grid at
(top) 9:00 and (bottom) 13:00. The rms observation noise was 10 mm.

A test of the height resolution was performed using the
25-station network. The 3 × 3 grid was used, but now with
16 layers (height resolution of 500 m). A constant refractivity
profile with an inversion and some structures of size ∼500 m
were used. Two simulations were made: one with rms obser-
vation noise of 5 mm and one with rms observation noise of
10 mm. The result, as seen in Fig. 9, shows that the inversion
around 1250 m was not completely detected, but otherwise
the refractivity was retrieved well. The mean estimation error
was 2.23 mm/km with rms observational noise of 5 mm, and
2.94 mm/km for 10 mm.

One way to improve the geometry of the problem might be
to use a more advanced grid, where the heights of the voxels in
a horizontal layer are not equal. In this way, the problem with
the system being ill conditioned due to a nearly flat grid might
be avoided. We have made simulations where more advanced
grids have been tested, e.g., a grid where we use eight layers in
height in the middle of the grid and seven layers elsewhere. The
results were inconclusive: the increase in refractivity occurring
around midday in the profile of Fig. 4 was detected much better
with the eight-station network and using GPS only when using
a more advanced grid, but instead the profile at the end of the
simulation (18:00) was not retrieved as accurately.
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Fig. 9. Result of a height sensitivity test using a profile constant in time. The
results of two simulations are shown; the rms observational noise were 5 mm
in one simulation and 10 mm in the other.

F. Network Considerations

The ability to retrieve the refractivity using a network of GPS
receivers will not only depend on the number of receivers in
the network but also be dependent upon the geometry of the
network. For example, a network where the stations have larger
spreads in the vertical direction will retrieve the refractivity
better than a network where the stations are at the same height.
In the case where there are two stations located in the same
voxel but at different heights, the local geometry in the voxel
will be strong, creating a better condition to obtain the refractiv-
ity of the voxel correctly. In the simulations performed above,
networks with some (∼100 m) differences in height have been
used, but larger height differences may improve the results. To
demonstrate the above, two simulations were carried out: one
using a network where the stations were at exactly the same
height and one with a spread in height. Both networks consisted
of nine stations. In the latter, the height spread was 1200 m.
The refractivity was the same as used in Fig. 4, and the rms
observation noise was 10 mm. The result can be seen in Fig. 10.
The mean estimation error was 2.83 mm/km for the former and
1.56 mm/km for the latter, where there were stations located in
both the first and second layers, causing the refractivity in both
the first and second layers to be retrieved with high accuracy.

G. Gradient Estimations

So far, we have only investigated the estimation of vertical
profiles. However, using our method, one could also retrieve
horizontal variations of wet refractivity. One way to assess the
estimation of horizontal variations is to look at zenith delay
gradients. The zenith delay gradient is defined as [24]

�G = 10−6


∇
ρ

∞∫
0

Nw(�ρ, z)dz





ρ=0

(15)

where �ρ is the horizontal position vector and z is the height.
If the integrated refractivity is assumed to change linearly, the

Fig. 10. Simulated and estimated wet refractivity profiles for two nine-station
networks: one with the stations at the same heights (network 1) and one with
stations at different heights (network 2). Shown are the profiles at (top) 9:00
and (bottom) 13:00. The rms observation noise was 10 mm.

gradient can be estimated if the integrated refractivities are
known above at least three sites.

A few simulations were made using the eight- and 25-station
networks, and assuming different gradients. By integrating
the retrieved refractivities from the ground to the top of the
troposphere at the horizontal midpoints of each voxel, the
gradient was estimated using a least square fit to (15). Here,
an assumption that the retrieved refractivity will be equal to the
refractivity in the middle of the voxel was made. In general, this
will not be true: the refractivity of a voxel will be some average
of the refractivity where the rays are crossing the voxel. Since
the stations are all located close to the middle of the grid, most
rays will be close to the middle of the grid, especially at the
lower layers. Hence, the estimated refractivity of an outer voxel
may not be equal to the refractivity in the middle of the voxel,
but rather the refractivity at a point in the voxel closer to the
middle of the grid. As a consequence, the estimated gradients
will be underestimated.

In Fig. 11, the retrieved gradients are plotted as a function of
time. The result was obtained using the 25-station network and
the 5 × 5 grid in Fig. 7 for higher horizontal resolution. The
gradient used in the simulation was 0.1 mm/km in the north
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Fig. 11. Retrieved north (solid line) and east (dotted–dashed line) gradients.
The mean north and east gradients are 0.094 and −0.189 mm/km, respectively
(the simulated values were 0.1 and −0.2 mm/km).

direction and −0.2 mm/km in the east direction. As expected,
the retrieved gradients were slightly lower than the simulated
ones, about 95% (the retrieved gradients were on average
0.094 mm/km in the north direction and −0.189 mm/km in
the east direction). In general, the standard deviations of the
gradient estimations were about 0.01 mm/km. The reason for
the gradient not being estimated very well in the beginning
of the simulation is because the estimated refractivity in the
beginning will be highly dependent on the initial guess (which
assumed no gradient).

H. Inclusion of Ground Data

A possible way to improve the tomographic retrieval might
be to include measurements of the wet refractivity at ground
level. Of course, the ground level wet refractivity is not equiva-
lent to the refractivity of a voxel. However, assuming that sev-
eral measurements of the wet refractivity on different places in
the voxels of the lowest layer could be available, the refractivity
of these voxels could be estimated rather well. In Appendix III,
it is shown that using one measurement on the ground, the
average refractivity between 0 and 1 km can be estimated
with an accuracy of around 3 mm/km. Using measurements
at several sites at different heights, it is likely that this can be
improved.

To test the inclusion of ground level refractivity data, we
used simulations where we assumed that measurements of the
refractivity of the voxels in the lowest layer were available with
an accuracy of 1 mm/km. We used the eight- and 25-station
networks and the profile simulated in Fig. 4. The assumed
ground data were included as additional observations in the
Kalman filter. The results indicated no significant improvement
when including ground data. For the eight-station network, the
average estimation error decreased to 1.74 mm/km, while for
the 25-station network it increased slightly to 1.29 mm/km. The
reason for the results not being much better when including
ground measurements is that the geometry of the lowest layer is
sufficiently good anyway (the stations are at different heights),

Fig. 12. Simulated and estimated wet refractivity profiles in real time using
eight and 25 stations at (top) 9:00 and (bottom) 13:00. The rms observation
noise was 10 mm.

and adding new information there will not have a significant
impact on the retrieval quality. This will especially be true in
the case of the 25-station network.

I. Real-Time Performance

When applying the method in real time, the situation will
not be much different compared to the postprocessing of data.
The largest additional difficulty in real time would be that
the satellite orbits may be less accurate. Another issue of
importance might be that the backward smoothing loop that we
run on our results after the forward Kalman filter loop will not
be used.

We made simulations where the satellite orbits had an accu-
racy of 5 m, which is of the same order of accuracy as the orbits
broadcasted by the satellites. Since there are more accurate
orbits available in real time, this can be considered a worst
case scenario. In these simulations, we did not use the back-
ward smoothing loop. We used both the eight- and 25-station
networks and the profile in Fig. 4. The results were slightly
worse than before, as seen in Fig. 12. The average estimation
errors increased to 1.90 and 1.43 mm/km for the eight- and
25-station networks, respectively.
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However, predicted orbits with much better accuracy than
5 m are normally available (e.g., the ultrarapid orbits from IGS
[15]). If so, the estimated profiles will be better, almost as good
as the postprocessing case. In near real time (i.e., a few hours
delay), even better orbits can be available (probably as good
as 20 cm or better, which is comparable to the orbits used in
the postprocessing simulations in this paper). In this case, we
would also be able to obtain an improved solution by using the
backward loop. Hence, all the results presented in this paper
could be regarded valid for a near-real-time application.

J. Comparison With Previously Used Method

Simulations comparing the new method presented in this
paper to a previously developed one were also performed. In
the previous methods, the slant wet delays were obtained by
processing them using, for example, a Kalman filter (using the
precise point positioning technique (PPP) [25]), in which the
slant wet delays were modeled as functions of zenith wet delays
and gradients together with the other unknown parts of the GPS
signals (clock errors and integer ambiguities). After the initial
GPS data processing (PPP), the retrieved slant wet delays (as
given by the zenith delays and gradients) were used in WeRKaF
[10], [11] to obtain the refractivity field.

The top plot in Fig. 13 shows the retrieval of the same profile
as in the top plot of Fig. 3 using the eight-station network, and
the bottom plot in Fig. 13 shows the retrieval of the same profile
as in the bottom plot in Fig. 3 using the 25-station network.
For simplicity, both profiles were without any gradients. The
rms observation noise was 5 mm. Shown in the figures are
the results using the new method: using WeRKaF with slant
wet delays obtained from the GPS data processing, and using
WeRKaF with slant wet delays being the true slant wet delays
plus the observation noise. The latter case corresponds to an
ideal case where all other contributions to the GPS phase
observations are correctly estimated; hence, the remaining parts
would be the slant wet delays plus the observation noise. This
will however probably be impossible in reality.

As expected, the solution using “ideal” slant wet delays is
performing best, followed by the new method. However, the
solution using the slant wet delays obtained from the PPP solu-
tion is not performing very well, and the error is increasing with
time. For the case of the top plot in Fig. 13, the mean estimation
errors are 0.65, 5.54, and 1.78 mm/km for “ideal” slant wet
delays, slant wet delays from the GPS PPP processing, and the
new method, respectively. For the bottom plot in Fig. 13, these
mean estimation errors are 1.65, 5.80, and 2.67 mm/km.

Looking at the lower plot in Fig. 13, we can see that the
solution using the slant wet delays estimated using PPP actu-
ally detects a profile having a strong inversion, however with
the maximum occurring at around 2.5 km instead of 1.5 km
as in the simulated profile. This solution does not change
significantly with time. Hence, this indicates that some of the
information about the height distribution of the wet refractivity
contained in the GPS phase observations has been lost in the
PPP processing.

One way that might improve the estimation when using
estimated slant wet delays is to add the residuals, although it

Fig. 13. Simulated and estimated refractivity profile using slant wet delays
obtained using PPP (estimated SWD), “ideal” slant wet delays, and the new
method. The upper plot uses the eight-station network, and the lower plot the
25-station network. The rms observation noise was 5 mm.

should be noted that such a procedure is not mathematically
correct due to the inherent features of the method of least
squares [12]. In some cases, adding the residuals can improve
the accuracy of the retrieved slant wet delays while in other
cases it will not, depending on how well it is possible to
model the unmodeled wet atmosphere using the PPP model
parameters. In our two simulations, we observed improvements
when adding the residuals, but the profiles were still retrieved
with errors with the same shape as before. The mean estimation
errors were 3.55 and 4.24 mm/km for the top and bottom plots
in Fig. 13, respectively.

In PPP processing, the only quantity not modeled correctly
was the wet mapping function. Since the ratio between two
slant wet delays at different elevation angles will depend on
the shape of the wet refractivity profile, we need to know the
wet refractivity profile to know the true mapping function. In
our simulations, however, we consider the case when we have
no knowledge of the wet refractivity profile; hence, we cannot
know the true mapping function. Instead, we use the Niell [16]
wet mapping function, which is based on an average profile
for the latitude and does not consider the current state of the
atmosphere. Hence, some of the information about the wet
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refractivity profile contained in the slant wet delays will be lost
in the PPP processing. Although this may be a small error, it
is important because it is the wet refractivity profile we want
to retrieve; hence, any loss of information on the water vapor
distribution is unwanted. This is especially true in cases when
low elevation angles are used, e.g., when we use a minimum
elevation angle of 5◦.

V. CONCLUSION

We have presented a new tomographic method for retrieving
the 3-D structure of the wet part of the tropospheric refractivity.
This method has the advantage that it estimates the refractivity
field directly from the raw GPS phase data.

As seen, the simulated refractivity fields were retrieved
accurately when using a 25-station network. However, the
simulations indicate that it will be difficult to retrieve the
refractivity field with great accuracy when strong inversions are
present using the existing Göteborg GPS network consisting
of eight sites. This is because the network contains too few
sites and is rather flat. The eight-station network can retrieve
more complicated refractivity fields, e.g., containing strong
inversions, but it requires a long time (> 12 h) to converge. In
reality, such complicated refractivity fields may not be constant
for such a long period. Initializing the Kalman filter with a good
initial guess for the refractivity field would be one way to find
the correct solution faster. However, simulations have shown
that it is most important to initialize the Kalman filter with a
refractivity field having a shape close to the correct one while
being off by a constant scale factor will not make a large impact.

A network containing more sites (like the 25-station network
we used in the simulations) or a network having a larger spread
in station heights (as the nonflat network used in Section IV-F)
will perform better. The simulations also show that using more
than one GNSS will improve the retrievals.

The refractivities in the lowest layers are retrieved accurately
in all simulations (except network 1 in Fig. 10). This is because
of the better geometry in the lowest layer, the stations being
located here and are at different heights (except in network
1 in Fig. 10). At higher levels, the geometry is much weaker
due to the linear dependence of the observations, making the
refractivity more difficult to retrieve.

As seen by the relative errors in the simulations, the method
will not retrieve the refractivity accurately (in a relative sense)
in the upper troposphere where the refractivity is very low.
This is expected since the method is sensitive to the absolute
refractivity (through slant wet delays). Also, the constraints in
the Kalman filter are not allowing for much variation of the
refractivity in the upper troposphere; hence, the refractivity
there will be strongly dependent on the initial guess. To re-
trieve the refractivity in the upper troposphere, other methods
should be used, such as, for example, the GPS occultation
techniques [26].

In Appendix III, a few other possible model-based methods
for retrieving the wet refractivity profile are presented. The
best performing model is as good as the tomographic solution
using 25 stations for the profile of the top plot in Fig. 3. The
refractivity in this profile is almost exponentially decreasing

with height, which is the behavior of the wet refractivity of
the atmosphere on average. Hence, it is not surprising that the
model estimates it well. For the profile at the bottom plot in
Fig. 3 and the changing profile in Fig. 4, the tomographic
solution using 25 sites is better than the model. The refractivity
of these profiles does not decrease exponentially with height in
the middle of the day; hence, the model cannot be expected
to perform as well in this case. This indicates that the GPS
tomography will improve the estimation of refractivity when
the wet refractivity distribution differs from the average.

When applying the method on real data, the results may be
different from the ones presented here. It is difficult to model
parts of the receiver noise such as multipath; hence, its effect
might be different than from what was seen in the simula-
tions. Furthermore, the variations in the refractivity simulated
may not completely correspond to typical real variations in
refractivity.

The next step in evaluating this method is to use real GPS
data. A few preliminary results were presented in [27]. Other
future developments of the method will include improvement
of the model for the covariance matrix in the Kalman filter.

APPENDIX I
ESTIMATION OF THE HYDROSTATIC DELAY

The hydrostatic part of the refractivity can be written as [28]

Nh = k1Rdρ (16)

where k1 is a constant, Rd is the specific gas constant of dry
air, and ρ is the mass density of air. If hydrostatic equilibrium
is assumed, we have

dP

dz
= −ρ(z)g(z) (17)

where g(z) is the acceleration due to gravity at height z, and
P the total pressure. By defining a mean acceleration due to
gravity

gm =

∫ ∞
0 ρ(z)g(z)dz∫ ∞

0 ρ(z)dz
(18)

the zenith hydrostatic delay can be calculated by using (16)
and (17) as

lzh = 10−6

∞∫
o

Nh dz = 10−6k1Rdg
−1
m P0 (19)

where P0 is the total pressure at the ground. By using an
appropriate mapping function, the hydrostatic delay in any
direction can be obtained.

In estimating the hydrostatic delay, we can identify three
main possible error sources, namely: 1) uncertainties in the
values of the constants used in the model (may give an error
of ∼0.02% [28]); 2) errors in the ground pressure measure-
ments; and 3) errors introduced by the hydrostatic equilibrium
assumption. To estimate how important the latter source is, an
investigation was made using radiosonde data from Landvetter
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Fig. 14. f(h) [see (22)] plotted as function of height h.

airport outside Göteborg. Using the ideal gas law, (17) can be
rewritten as

1
P

dP

dz
= − g(z)

RdT (z)
(20)

where T (z) is the temperature. If we integrate the equation
between z = 0 and z = h, we obtain

ln
P0

Ph
=

h∫
0

g(z)
RdT (z)

dz. (21)

The ratio g(z)/T (z) does not vary too much and too rapidly as
a function of height, so if the integration on the right-hand side
of (21) is done numerically, the error we introduce will be very
small. Furthermore, if h 
 RE , with RE being the radius of
the Earth, g(z) will be approximately constant.

Using radiosonde data, both the left- and the right-hand
sides of (21) could be calculated. Then, according to (21), the
quantity

f(h) =

∫ h

0
g

RdT (z)dz

ln P0
Ph

(22)

should be equal to 1. In Fig. 14, f(h) is plotted as function of h
based on radiosonde data from the period 1996–2002. As seen,
f(h) is close to 1. The deviations from 1 is of the same order as
can be expected due to errors in the pressure and temperature
measurements, typically 0.5 mbar and 0.2 ◦C, respectively [29].

Data from three radiosonde launches (all in the year 2000)
were not included in Fig. 14. For these data, f(h) deviated from
unity of up to 2.5%. It is likely that these profiles contain errors
due to faulty temperature measurements. The values recorded
by the radiosondes were about 360 K at heights of 200–300 m.

Based on this investigation, an upper limit on the error in the
hydrostatic delay introduced by the assumption of hydrostatic
equilibrium is ∼0.1%. However, since the deviation of f(h)
from 1 can be explained by errors in the radiosonde measure-
ments, a definite limit on the validity of the assumption of

hydrostatic equilibrium could not be obtained. It is likely that
the error could be much smaller than the above limit.

APPENDIX II
KALMAN FILTER

The chosen implementation of the Kalman filter is the alter-
native Kalman filter loop described in [19]. For more detailed
information on the design of the refractivity part of the covari-
ance matrix, see [11].

Let Nw(h1) and Nw(h2, R) denote the wet refractivity at two
points at heights h1 and h2 and separated with the horizontal
distance R. Then we can define a structure function for Nw as

DNw
(h1, h2, R) =

〈
[Nw(h1) −Nw(h2)]

2
〉

(23)

where the brackets denote the expectation value. By making the
definitions

mNw
(h) = 〈Nw(h)〉

σ2
Nw

(h) =
〈
(Nw(h) −mNw

(h))2
〉

(24)

cov [Nw(h1), Nw(h2, R)] = 〈Nw(h1)Nw(h2, R)〉
−mNw

(h1)mNw
(h2) (25)

we can rewrite (23) as

DNw
(h1, h2, R) = (mNw

(h1) −mNw
(h2))

2 + σ2
Nw

(h2)

+ σ2
Nw

(h2) − 2cov [Nw(h1), Nw(h2, R)] . (26)

According to [30], when h1 = h2 = h, this reduces to

DNw
(h, h,R) = 2σ2

Nw
(h) − 2 cov [Nw(h), Nw(h,R)]

=
R2/3

1 +
(

R
L

)2/3
C2

N (h)

=CR(R)C2
N (h) (27)

where L is the turbulence saturation scale length. Based upon
this result, we formulate a model for DNw

(h1, h2, R) as

DNw
(h1, h2, R) = (mNw

(h1) −mNw
(h2))

2

+CR(h1, h2, R)C2
N (h1, h2). (28)

Vertical variations may not be equivalent to horizontal vari-
ations. To take this into account, we introduce an adjustable
constant C0 and model CR as

CR =

[
R2 + (h1 − h2)2C0

]1/3

1 +
[

R2+(h1−h2)2C0
L2

]1/3
. (29)

A high value of C0 means a low correlation between the
refractivities at different heights; hence, the filter will rely more
on the data than on the model for the height dependence of
refractivity. On the other hand, the system may be weak in
the vertical direction; hence, a high C0 will also mean high
sensitivity to noise. In the simulations, it was also found that
C0 = 106 was a good value for C0.
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Variations in time are assumed to be the result of a con-
stant wind velocity Vw, so these variations can be described
by the above model with R = Vwt, with t being the time.
Assuming a wind speed of 8 m/s, C2

N (h1, h2) may be obtained
from radiosonde data. Assuming that C2

N (h1, h2) = CN (h1) ·
CN (h2), a simple model for C2

N was obtained from radiosonde
launches separated by 6 and 12 h at the Landvetter airport
outside Göteborg, i.e.,

CN (h) = c0 exp

[(
h

4460

)3

−
(

h

2270

)2

+
h

1910

]
(30)

where c0 = 0.12 mm/km m−1/3. It was, however, found that a
slightly lower c0 (c0 = 0.04 mm/km m−1/3) gave better results
in the simulations, so this value was used instead. Also, it
was discovered that the results became much better when all
distances in space were divided by a factor of 1000 when
calculating the covariance matrix (while not changing distances
in time). The reason for this may be that the correlations
between the average refractivities of two voxels are somewhat
different than the correlations between the refractivities of the
midpoints of these voxels. A simple investigation revealed that
the decreased correlation due to averaging may explain the
factor 1000 in the correlation between neighboring voxels.
Another reason for this factor may be that the effective voxel
sizes are smaller in the lowest layers since there will be no GPS
signals crossing the outer part of the outer voxels; hence, the
method will not be sensitive to the refractivity there.

Using the above-derived DNw
(h1, h2, R), we can define the

error covariance matrix needed in the Kalman filter implemen-
tation. The refractivities of the voxels are assumed to follow a
random walk behavior. For consecutive samples k and k + 1 of
voxels i and j, we have

(Nw)i(k + 1) = (Nw)i(k) + wi

(Nw)j(k + 1) = (Nw)j(k) + wj (31)

where w is the driving noise. We assume the variance of this
driving noise to be constant in time. The covariance between
samples i and j for sampling interval T then becomes

Qij =〈((Nw)i(k+1)−(Nw)i(k))·((Nw)j(k+1)−(Nw)j(k))〉
=DNw

(h1, h2, R, T )−DNw
(h1, h2, R)

=

[
r
2/3
f

1+(rf/L)2/3
−

R
2/3
f

1+(Rf/L)2/3

]
(32)

where

R2
f =R2 + (h1 − h2)2C0

r2
f =R2

f + (Vw · T )2. (33)

For the clock errors, white noise processes were assumed.
This assumption is not necessarily true: there might be corre-
lations between the clock error at two different time epochs.
However, assuming white noise in this case will not be wrong
since by doing that we only assume the worst case scenario

(i.e., that knowledge of the clock error at a previous time epoch
will not help in estimating the clock error at the present epoch).
Hence, for two clock errors i and j for consecutive samples k
and k + 1, we have

τi(k + 1) = ui τj(k + 1) = uj (34)

where u is a white noise process. Their variances σ2
u are

assumed to be equal and independent in time and of each other.
An investigation of real GPS data indicated that the standard
deviations of the clock errors (including the orbit errors and
common parts of the integer ambiguities) σu were about 105 m
(∼1 ms). The clock part of the covariance matrix then becomes

Qij = 〈(τi(k + 1) − τi(k)) (τj(k + 1) − τj(k))〉

= 〈uiuj〉 =
{
σ2

u, i = j
0, i �= j.

(35)

The Kalman filter is initialized by an initial guess for the
refractivities (no special initial guess for the clock errors is
needed because we assume that they are zero-mean white-noise
processes). The initial guess for the wet refractivity profile
used in our simulations was an exponential profile with a scale
height of 2 km and with ground value of 40 mm/km, which is
approximately what we will obtain if we take an average profile
of all profiles obtained from radiosondes during one year. After
the full Kalman filter loop, a standard backward loop [19] is run
to get smoother and hence possibly more accurate results.

APPENDIX III
REFRACTIVITY ESTIMATION USING SIMPLE METHODS

The refractivity profile can be retrieved using other simpler
methods than the GPS tomography. We have considered four
methods, namely: 1) using pure statistics (i.e., estimating the
refractivity based on the day of the year); 2) using ground data
(i.e., having measurement of the refractivity at the ground);
3) using a single GPS receiver (or another instrument which can
measure the zenith wet delay, e.g., a water vapor radiometer);
and 4) having both ground data and one GPS receiver.

We divided the atmosphere into eight layers, each with a
height of 1 km, and calculated the average refractivity in each
layer from each radiosonde launch along with the integrated re-
fractivity (zenith wet delay) and the refractivity on the ground.
The models for the wet refractivity used are described by

N(k) = a1(k) + a2(k) sin
(

2π
D

365
+ a3(k)

)
(36)

N(k) = b1(k) + b2(k)N0 (37)

N(k) = c1(k) + c2(k)lz (38)

N(k) = d1(k) + d2(k)N0 + d3(k)lz (39)

where N(k) is the refractivity in layer k, N0 is the refractivity at
the ground, lz the zenith wet delay, D is the day of the year, and
ai(k), bi(k), ci(k), and di(k) are constants. The constants were
obtained from a least square fit to three years of radiosonde
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TABLE I
VALUES FOR THE CONSTANTS OF MODELS (36) AND (37). REFRACTIVITY

IS MEASURED IN MILLIMETERS PER KILOMETER AND a3 IS IN DEGREES

TABLE II
VALUES FOR THE CONSTANTS OF MODELS (38) AND (39). REFRACTIVITY

IS MEASURED IN MILLIMETERS PER KILOMETER AND

WET DELAY IS MEASURED IN MILLIMETERS

Fig. 15. Average error of the refractivity estimations using the different
methods described in the text.

data. The obtained values of the constants are shown in Tables I
and II.

Fig. 15 shows how well the four models agree with real data.
Plotted are the average deviation between the models and the
radiosonde data. The data used are four years of radiosonde
data, which were data not used in the coefficient estimate of
the models. On average, the deviations were 4.1, 2.8, 2.1, and
1.6 mm/km for the methods when using pure statistics, ground
data, zenith wet delay, and both ground data and zenith wet
delay, respectively.

The best of the methods (39) estimates the exponential profile
in Fig. 3 with an average estimation error of 1.1 mm/km, i.e.,
about the same accuracy as the tomographic estimation when
using the 25-station network. The profile with an inversion in
Fig. 3 is, however, only estimated with an average estimation
error of 5.01 mm/km, better than the eight-station network but

clearly worse than the 25-station network. The mean estimation
error when estimating the profile in Fig. 4 is 1.59 mm/km,
which is better than the tomographic solution from the eight-
station network but worse than the solution from the 25-station
network. The change in the refractivity that occurs in this profile
has its maximum in the middle of the grid, i.e., the change is
not so strong in the outer voxels. The model (39) estimation
of the profile is worst in the middle (mean estimation error
1.87 mm/km), while the tomographic estimations are best in
the middle of the grid where the stations are located (mean
estimation error of 1.79 and 1.26 mm/km using eight and
25 stations, respectively). This confirms the usefulness of the
tomographic method in situations when nonstandard profiles
(containing inversions, etc.) are present.
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