

160 GHz Microwave Scintillometer System RPG-MWSC-160

Harald Czekala¹, Thomas Rose¹, Martin Philipp¹, Oscar Hartogensis², Gerrit Maschwitz¹ 1: RPG Radiometer Physics GmbH, Werner-von-siemens-Str. 4, 53340 Meckenheim, Germany 2: Wageningen University, Meteorology and Air Quality Group, PO Box 47, 6700 AA Wageningen, the Netherlands

RPG-MWSC-160

Radiometer Physics GmbH (RPG) released the first commercially available microwave scintillometer RPG-MWSC-160. It is designed for combined operation with an optical Large Aperture Scintillometer (LAS) to simultaneously observe sensible heat flux *H* and latent heat fluxes $L_{v}E$.

Key Features

Applications

Measurements of the sensible heat flux *H* and evapotranspiration $L_{\nu}E$ are significant for:

- Irrigation and water management
- Forest fire warning
- Weather forecasting
- Radiation budget studies
- Hydrology

RF-in

LO-in

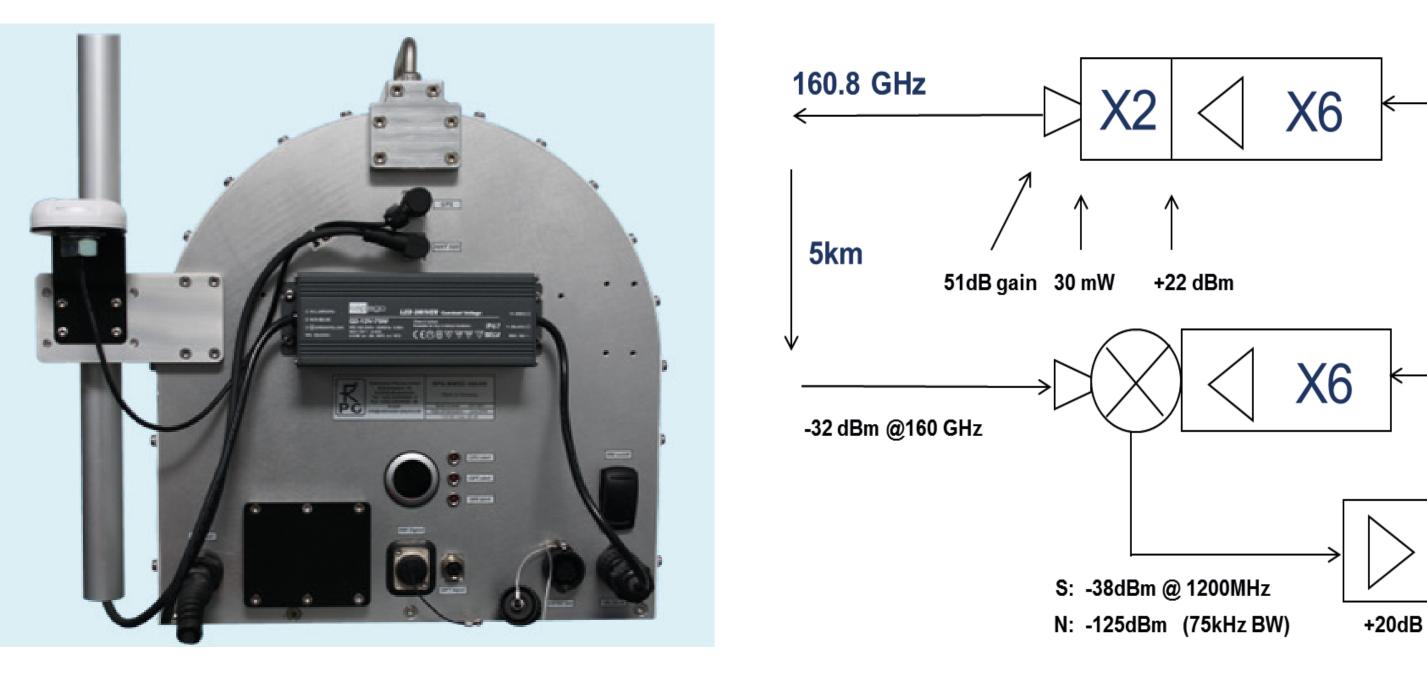
13.3 GHz

IF-out

1200 MHz

13.4 GHz

- High frequency (160.8 GHz, λ=1.86 mm) for sufficient co-spectrum with LAS
 Large aperture (300 mm) for small beam width (0.45° FWHM)
- Tuneable power level (max. >25 mW) allows path length between 500 m and 10 km
- Low weight (~10 kg)
- Low power consumption (~20 W)


Operating Software

The RPG-MWSC-160 includes a software package for the combined operation of a MWSC/LAS scintillometer system. In combination with the integrated weather station Vaisala® WXT-520 it provides the complete data processing chain from raw signals to heat fluxes.

Design

Measurement

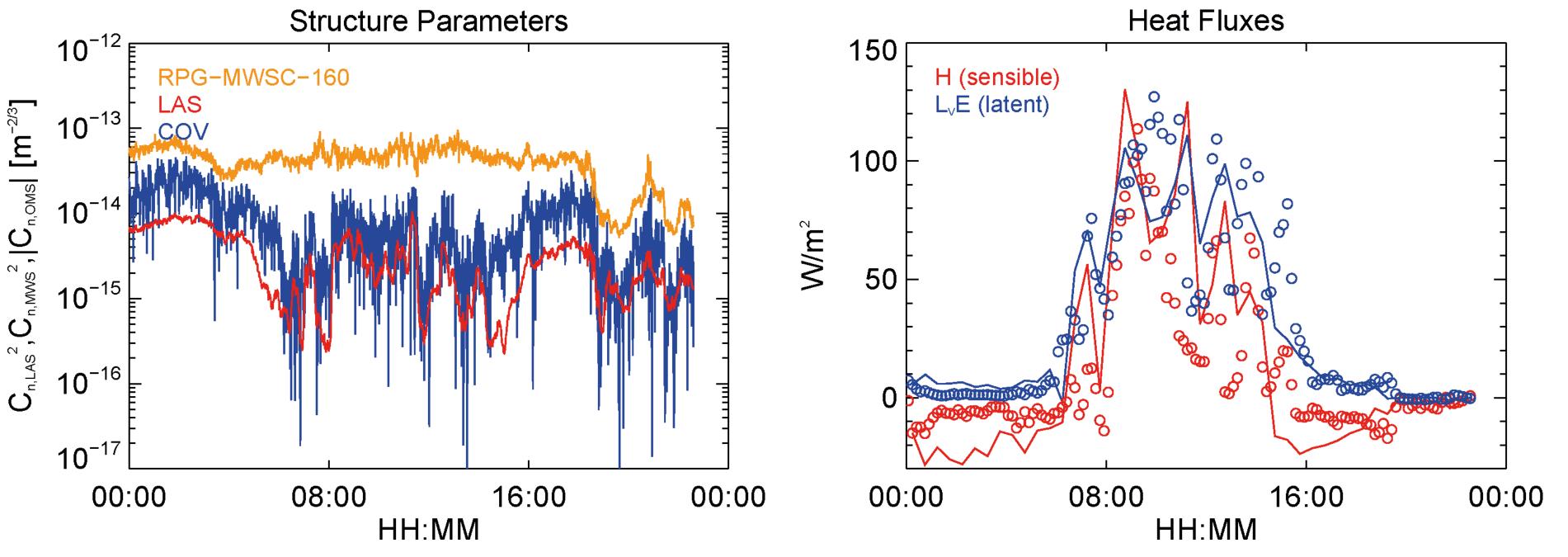
The RPG-MWSC-160 uses hardware developments from space projects. The prototype instruments were developed by RPG and Wageningen University (The Netherlands) within the OMS (Optical and Microwave Scintillation) project.

1 kHz digital raw data for MWSC and LAS
Housekeeping data

The RPG-MWSC-160 has successfully been tested in combination with different LAS

۲

- (Co)variances of the combined system
- Structure parameters of refractive index Cn^2
- Sensible and latent heat fluxes H and $L_V E$


systems within two comprehensive field campaigns in Sonora (Mexico) and Lindenberg (Germany). The two campaigns cover two different applications: short path length / low observation height (Mexico: L=880m, z=2.75m) over a homogeneous surface and long path length / high observation height (Lindenberg: L=4800m, z=45m) over a heterogeneous landscape.

Structure Parameters and Heat Fluxes

The combined scintillometer system provides synchronous measurements of MWSC and LAS

Data Processing

Structure parameters of the refractive index from signal variances and covariance of MWSC and LAS [1]

Calculate Path integrated sensible and latent heat fluxes *H* and *L*_v*E* using Monin-Obukhov-Similarity-Theory (MOST) [3] In-situ measurements of temperature *T* and humidity *q* allow to calculate structure parameters C_T^2 , C_q^2 , and C_{Tq} [1][2]

Measurement time series for a long path over heterogeneous landscape (September 8, 2013, Lindenberg, Germany). Left: refractive index structure parameters for **RPG-MWSC-160**, optical **LAS**, and for the signal covariance (**COV**) of both instruments (OMS method, Lüdi et al. [1]). Right: estimates of path integrated **sensible heat flux H** and **latent heat flux L**_V**E**. Circles give measurements from an Eddy Covariance station (EC).

References

[1] A. Lüdi, F. Beyrich, and C. Mätzler, "Determination of the Turbulent Temperature–Humidity Correlation from Scintillometric Measurements," Boundary-Layer Meteorol., vol. 117, no. 3, pp. 525–550, Dec. 2005.

[2] H. C. Ward, J. G. Evans, O. K. Hartogensis, A. F. Moene, H. A. R. De Bruin, and C. S. B. Grimmond, "A critical revision of the estimation of the latent heat flux from twowavelength scintillometry," Quarterly Journal of the Royal Meteorological Society, p. n/a–n/a, 2013 [3] D. Li, E. Bou-Zeid, and H. A. R. D. Bruin, "Monin–Obukhov Similarity Functions for the Structure Parameters of Temperature and Humidity," Boundary-Layer Meteorol.,

vol. 145, no. 1, pp. 45–67, Oct. 2012.

RPG Radiometer Physics GmbH Werner-von Siemens-Str. 4 53340 Meckenheim, Germany

phone: +49 2225 99981-0 www.radiometer-physics.de remotesensing-sales@radiometer-physics.de