K Microwave Radiometry for Atmospheric Remote Sensing

RPG-LHATPRO

Harald Czekala, Thomas Rose, Gerrit Maschwitz RPG Radiometer Physics GmbH, Meckenheim, Germany

RAdioMETER PG Physics Gmbh

Intro 1

- Nature/Source of observed signal (thermal radiation, TB) 2.
 - Planck's law
 - Conversion of energy units to brightness temperature TB
- 3. Link between MW spectrum and atmospheric state
 - Absoption lines, transmission windows, information content
- 4. Measurement devices, radiometer technology
 - Heteroydyne + Direct Detection
 - Calibration
- 5. Retrieval of atmospheric data from microwave data
 - Formulation of the problem
 - Adding instrument imperfection Regression or iterative
- Examples... 6.

- Simulation of the MW data by RTM

What is "Remote Sensing"?

Observing radiation (more general: energy) reaching a "receiver" device to learn something about a remote object

Examples:

- The human eye (binocular total power receiver, multi-pixel focal-plane array, recording of mostly back-scattered light in the 500 nm to 800 nm region...)
- Radar, Lidar, Sonar, Sodar,
- IR fever thermometer...
- Microwave specrometers
- Microwave radiometers

What are we focussing on? Microave Radiometry...

- Passive total power radiometers in the centimer to millimeter wavelength regime (10 GHz to 300 GHz)
- Retrieval algorithms to invert observed microwave sky brightness into something meteorological (meaningful) data

Basic Concept in one Slide

- Passive: detection of microwave Thermal Radiation (no power emitted by MWR!)
 - Emission (+absorption, scattering) from atmospheric components:
 - Gases (H2O, O2, N2,... line emission)
 - Hydrometeors (clouds, precipitation, frequency dependent continuum)
- Radiometric observation:
 - Intensity (sky brightness) in units of brightness temperatures (TB)
 - At several fixed frequencies
 - At several elevation angles
- Meteorological Variables
 Calculated by retrievals
 - Solving the "forward problem" (radiative transfer for a given atmosphere)
 - TB = F(T(z), Q(z), P(z), LWC(z))
 - Inversion of F is the "retrieval"
 - $T(z) = F^{-1}(TB)$
 - Inversion problem is ill-posed
 - Data set statistics important!

2. Thermal Radiation and the Microwave Spectrum

Thermal Radiation: Planck's Law

- Source of detected signal: Thermal radiation (Planck , 1901)
- All bodies of with T>0 emit EM radiation at all wavelengths

Observables: Intensity → Brightness Temperature

- Radiometers observe "sky brightness" or: radiant energy or: specific intensity, ... $dE_{\nu} = I_{\nu} \cos \theta \, d\nu \, d\sigma \, d\omega \, dt$ $I_{\nu} \equiv I_{\nu}(x, y, z, \gamma, \delta, \mu, t)$
- Units: $Wm^{-2}sr^{-1}Hz^{-1}$
- Extremely small power levels: P=~10⁻¹³ W (demands high amplification, 100 dB)
- More "human readable" units: Brightness Temperature (TB)

The brightness temperature T_B is defined as the temperature at which the blackbody emission $B(T_B)$ exactly matches the measured intensity I:

$$I = B(T_B). (2.9)$$

 $d\sigma$

By inverting Planck's function for a measured intensity one obtains the corresponding brightness temperature

$$T_B = B^{-1}(I). (2.10)$$

- Optically thick (solid) objects have TB = $\epsilon \cdot (T_{physical})$ (with emissivity ϵ =0.0 1.0)
- Optically thin media: translucent, optical thickness τ absorption & emission proportional to presence of absorbing matter → RTM (Radiative Transfer Model)

$$\tau = \int_{0}^{\infty} \alpha (s) \, ds$$

 $d\omega$

3. How the MW Spectrum is defined by the Atmosphere

Impact of Atmosphere on MW Spectrum (I)

- Emission proportional to absorption (Kirchhoff's radiation law)
- Atmosphere is made from gas and small particles
 - → discrete absorption lines rather than continua (quantum mechanics)
- Atmospheric constituents define the observed spectrum

- Emission lines of water vapour (vary with H₂O Mixing ratio, and Temperature)
- Emission lines of Oxygen (vary with T, but mixing ration is fixed)
- Window channels in between lines: mostly affected by liquid water and the far wings of other lines
- At higher frequencies: trace gases

Different views of the MW Spectrum

1.0

LWP/IWV:

- Compare a channel in the H2O line with a window channel
- Increase in H20 increases TB in line, not in the window
- Increase in LWP adds to both channels, (most in the window)

T-Profile:

- Frequency dependent absorption depth
- Contributions from upper atmosphere to total received signal are stronger for low absorption (absorption on the way down)

Boundary Layer T-Profile:

- Absorption length decreases for frequencies at line center (60 GHz)
- Limited (approx. 600 m) emission depth @ 58 GHz
- Weighting functions shifted towards surface by elevation scans

Done so far:

- the source of the radiation, and
- the way the atmospheric conditions make an imprint on the microwave spectrum...

Remaining:

- Have a measurement device for microwave radiation
- Transform microwave measurements into atmospheric data

4. Radiometers: Hardware

Radiometer Technology (I): Layout

- Select frequencies for variables of interest (+ NEΔT, bandwidth, ...)
- Select a receiver technology
 - Direct-Detection Filterbank: Amplify, split, filter, detect
 - Heterodyene: down-conversion to IF, the process the IF, or sequentially scan the LO over scpterum (slow, RFI problems)
- Select calibration mechanisms
- Engineer a robust infrastructure around the RF

Hardware Example

HATPRO Direct Detection Filterbank Profiler (parallel data aquisition 14 ch.)

Frequencies, bandwith and # of channels

	K Band (22- 31)	V Band (50-60)
Channel 1	22.24 GHz / 200 MHz	51.26 GHz / 230 MHz
Channel 2	23.04 GHz / 200 MHz	52.28 GHz / 230 MHz
Channel 3	23.84 GHz / 200 MHz	53.86 GHz / 230 MHz
Channel 4	25.44 GHz / 200 MHz	54.94 GHz / 230 MHz
Channel 5	26.24 GHz / 200 MHz	56.66 GHz / 650 MHz
Channel 6	27.84 GHz / 200 MHz	57.30 GHz / 1000 MHz
Channel 7	31.40 GHz / 200 MHz	58.00 GHz / 2000 MHz
Tsys	< 350 K	< 600 K
Degrees of Freedom	2 to max. 3 uncorrelated informations	approx. 5 uncorrelated informations

Auto-Calibration Devices:

Noise Injection + Magnetically switched Isolators 20 Hz Dicke-Switching, ultra-stable, **4000 s** Allan-Stability

Radiometer Technology (II): Calibration

- Detector always "sees" contributions from
 - system emission of lossy components,
 - plus scene (atmosphere signal),
 - plus additional calibration signals

- Voltage signal proportional to second moment of E-field (total power, no phase!)
- T_{sys} describes systems sensitivity limits by own emission: T_{sys} =3000 K, T_{sig} =300 K \rightarrow SNR=0.1
- Gain (mV/K): frequently measure G by comparison of TB with black body (quasi-optical load or waveguide termination)

Radiometer Technology (III): Calibration examples

Challenge: Environment Conditions

Lampedusa, Italy (humid, hot, salty)

Dome-C, Antarctica (3.300m, -25 to -80 °C)

Research Vessel "Polarstern" (Atlantic Ocean)

ALMA site, Chile (5.500m above sea level)

Zugspitze, Germany (2.800m, -35 °C, 250km/h wind)

AMMA campaign, Benin (West-Africa, hot climate, dust)

5. How to Retrieve Meteorological Data from TB data

Retrievals

 Solving the "forward problem" (radiative transfer for a given atmosphere)

TB = F(T(z), Q(z), P(z), LWC(z))

- Inversion of F is the "retrieval", e.g.:
 T(z) = F⁻¹(TB)
- Inversion problem is ill-posed
- Data set statistics important!
- Radiative Transfer Model simulates the instrument response to each atmospheric state ("Forward Model")
- Different choices for inversion scheme:
 - Regression retrievals derived by fitting mathematical function to explain atmospheric variables as a function of the TB-vector
 - Iterative ("physical") retrievals start with a first guess state and iteratively modify the profile to minimize the TB difference between simulated and mesured TB
 → 1D-Var, 4D-Var

- Task: Find equation that links IWV to brightness temperatures (TB): IWV = a0 + a1*TB1 + a2*TB2 + a3*TB3 + ... (IWV = a0 + a1*TB1 + a2*(TB1)² + a3*TB2 + ...)
- 2. Use 10.000 Radio soundings to
 - → Calculate/Analyze real IWV from soundings
 - \rightarrow Simulate TB1, TB2, TB3, ...
- 3. Use 5.000 pairs of IWV and corresponding brightness temperature vectors (TB1, TB2, TB3, ...) to derive coefficients a0, a1, a2, a3, ...
- 4. Use remaining 5.000 pairs of real IWV and simulated TB to test the retrieval:
 - → For each set of simulated brightness temperatures, apply coefficients a0,a1,a2,.. to calculate (=retrieve) a simulated IWV (not real TB measurements, but simulated TB measurements used during retrieval)
 - → Compare "real IWV" to "simulated IWV" from application of retrieval
 - → For 5.000 cases, we have a difference of real IWV and retrieved IWV (and can calculate corellation, RMS, Bias)
 - \rightarrow Real IWV is integral of RH-profile
 - → Simulated IWV is retrieved from simulated TB-vector, which is depending on the full atmospheric condition (different cloud situations, different T-profiles, etc...)

Retrieval Test

• Retrieval self test estimates expected performance in terms of RMS

RTM Model

- RT model solves 1D or 3D radiative transfer equation
- Simple emission/absorption models
- Sophisticated (multiple) scattering codes

$$\left| \begin{array}{cc} \displaystyle \frac{d\,\overline{\mathbf{I}}(z,\theta)}{\frac{1}{\mu}dz} \end{array} \right| = \ - \ \overline{\sigma}_e(z,\theta) \ \overline{\mathbf{I}}(z,\theta) + \ \overline{\sigma}_a(z,\theta) \ B(T(z)) \end{array}$$

Polarization (surface effects, non-spherical hydrometeors)

Before retrieval building:

- Last processing layer needs to model the imperfections of the radiometer system, such as
 - RMS noise
 - Calibration uncertainties
 - Band width effects (no such thing as a centre frequency!)
 - Beam width (antenna patterns usually 1 to 10 degree)
 - Earth curvature (transparent channels)

- Simplified (non-scattering) RT model only good for non raining atmospheres
- Scattering more important at higher frequencies
- At low frequencies: Polarization effects by emission of non-spherical particles (rain at 10 GHz)
- Extension for rain or snow (graupel, ice, ...):
 - Polarized RTE using the 4-component Stokes vector
 - 4 coupled Integro-Differential equations (with boundary conditions)

$\begin{array}{l} \mbox{Differential change} \\ \frac{d\,\overline{\mathbf{I}}(z,\theta)}{\frac{1}{\mu}dz} &= -\,\overline{\overline{\sigma}}_e(z,\theta)\,\overline{\mathbf{I}}(z,\theta) + \,\overline{\sigma}_a(z,\theta)\,B(T(z)) \\ &= -\,\overline{\overline{\sigma}}_e(z,\theta)\,\overline{\overline{\sigma}}_e(z,\theta)\,B(T(z)) \\ &= -\,\overline{\overline{\sigma}}_e(z,\theta)\,\overline{\overline{\sigma}}_e(z,\theta)\,B(T(z)) \\ &= -\,\overline{\overline{\sigma}}_e(z,\theta)\,B(T(z)) \\ &= -\,\overline{\overline{\sigma}}_e($

6. Data Examples

Comparison with Mast data: 15 day time series

ITARS 2013-02-14 Microwave Radiometry

- Comparison of HATPRO 200m temperature measurements with tower at 200m
- **RPG-Boundary-Layer-Mode**: elevation scans, optimized bandpass filters, small beam

Boundary Layer temperature profile

Display Temperature Profiles (Boundary Layer)

IWV time series over one month (KNMI, May 2006). 140 radio soundings (26. April to 4. July, Cabauw, KNMI). Radiosonds: Vaisala RS-92. No-Rain RMS: 0.43 kg/m^2, Bias: 0.05 kg/m^2

Software – 24-hour readings of OWV, LWP, Cloud, Met-sensors

ITARS 2013-02-14 Microwave Radiometry

Time series of temperature inversion

Thank you!

czekala@radiometer-physics.de

ITARS 2013-02-14 Microwave Radiometry

RPG Radiometer Physics GmbH 33